5.2a Chemical bonds are formed when valence electrons are:
transferred from one atom to another (ionic)
shared between atoms (covalent)
mobile within a metal (metallic)
5.2b Atoms attain a stable valence electron configuration by bonding with other atoms.
Noble gases have stable valence configurations and tend not to bond.
5.2c When an atom gains one or more electrons, it becomes a negative ion and its
radius increases. When an atom loses one or more electrons, it becomes a positive ion
and its radius decreases.
5.2d Electron-dot diagrams (Lewis structures) can represent the valence electron
arrangement in elements, compounds, and ions.
5.2e In a multiple covalent bond, more than one pair of electrons are shared between
two atoms. Unsaturated organic compounds contain at least one double or triple bond.
5.2f Some elements exist in two or more forms in the same phase. These forms differ in
their molecular or crystal structure, and hence in their properties.
5.2g Two major categories of compounds are ionic and molecular (covalent)
compounds.
5.2h Metals tend to react with nonmetals to form ionic compounds. Nonmetals tend to
react with other nonmetals to form molecular (covalent) compounds. Ionic compounds
containing polyatomic ions have both ionic and covalent bonding.
5.2i When a bond is broken, energy is absorbed. When a bond is formed, energy is
released.
5.2j Electronegativity indicates how strongly an atom of an element attracts electrons
in a chemical bond. Electronegativity values are assigned according to arbitrary scales.
5.2k The electronegativity difference between two bonded atoms is used to assess the
degree of polarity in the bond.
5.2l Molecular polarity can be determined by the shape of the molecule and distribution
of charge. Symmetrical (nonpolar) molecules include C
O2 , CH4 , and diatomic elements.Asymmetrical (polar) molecules include HCl, N
H3 , and H2 O.5.2m Intermolecular forces created by the unequal distribution of charge result in varying
degrees of attraction between molecules. Hydrogen bonding is an example of a
strong intermolecular force.
5.2n Physical properties of substances can be explained in terms of chemical bonds and
intermolecular forces. These properties include conductivity, malleability, solubility,
hardness, melting point, and boiling point.